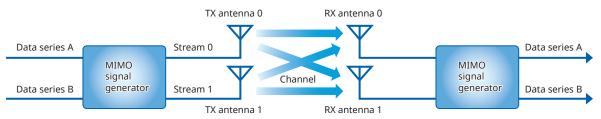

# **Anritsu** envision : ensure

# WLAN MIMO Measurement Maximizing MT8870A Performance with Applications

Universal Wireless Test Set MT8870A

## WLAN MIMO Technology

Access points and WLAN routers are key parts of the infrastructure supporting typical portable devices like tablets. Multiple-Input Multiple-Output (MIMO) WLAN technology standardized by 802.11n is being used increasingly as a method for improving the speed and quality of data transfers between wireless sections and it is now being deployed in 802.11ac networks. WLAN networks using MIMO has become widespread dramatically.




MIMO uses multiple antennas and the MIMO processes handling assignment of data to each antenna, etc., are managed by the baseband chip. Although the baseband chip assures the MIMO functions, developers and manufacturers of WLAN appliances must still test the WLAN MIMO technology during the development phase in an environment that is as realistic as possible while also considering ways to cut costs and tact time during the manufacturing phase, all the while ensuring quantitative measurement results.

# **Outline of MIMO**

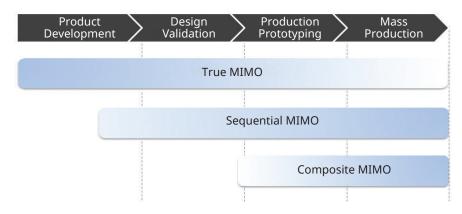
Using MIMO, multiple data streams are sent over the air (channels) using multiple TX antennas and these streams are received from the air using multiple RX antennas. If each stream carries the same information, even if the transmission quality of one or more streams drops, the original signal can still be recovered with high fidelity and the overall quality of the transmission is maintained. On the other hand, if each stream carries different information, the data transmission capacity is increased to increase the transmission speed.

In a 2×2 MIMO system using two send (TX) and two receive (RX) antennas, the two data series A and B at the transmitter are formed into two streams by the MIMO signal generator processing and are sent at the same timing and frequency from antenna 0 and antenna 1. The receiver receives the data at the two RX antennas and reproduces the data series A and B using the MIMO signal separator processing. The signal input to the receiver MIMO signal separator block is a mixture of multiple streams arriving from multiple signal paths. The path from one antenna at the TX side to one antenna at the RX side is called a channel, and there are 4 channels in a 2×2 MIMO system.



#### WLAN 802.11n/11ac MIMO Measurement

Installing up to four units of the TRX Test Module MU887000A/01A (MU88700XA) in the Universal Wireless Test Set MT8870A main frame along with the WLAN 802.11b/g/a/n/ac TX Measurement software MX88703xA and the WLAN 802.11b/g/a/n/ ac Waveforms MV88703xA supports evaluation of WLAN MIMO devices at every stage from R&D to manufacturing, offering makers an ideal, high-performance, high value-added MIMO measurement solution.


Usually, system setup is performed using a collection of up to four units of the same measuring instrument when measuring each antenna of a MIMO device (streaming). Synchronization of the timing between the signal generators required at MIMO measurement as well as synchronization of the 10-MHz reference frequency generator and control of each measuring instrument requires complex cable connections. This type of system setup is troublesome for engineers performing MIMO measurements, causing a lot of extra work and costs. The MT8870A with installed MU887000A/01A is the ideal measurement solution because — unlike conventional MIMO measurement systems — complex cable connections are not required for signal synchronization.

| MIMO Function      | Cost   | Features                                                                                          | TX Test                                                                                                                                    | RX Test                                                                                                                                                                                       |
|--------------------|--------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| True MIMO          | High   | Uses multiple MU88700xA<br>to test WLAN MIMO devices.                                             | The measurement for each antenna can<br>be performed independently and<br>simultaneously                                                   | The MIMO signal for each channel is synchronized and output from the MU88700xA to measure the RX sensitivity.                                                                                 |
| Sequential<br>MIMO | Medium | Tests MIMO device by<br>switching four test ports at<br>one MU88700xA.                            | The TX measurement for each antenna can be performed by switching each antenna.                                                            | RX sensitivity is measured using SISO for each antenna by switching antennas.                                                                                                                 |
| Composite<br>MIMO  | Low    | Uses external splitter* to<br>synthesize MIMO device<br>signal for testing with one<br>MU88700xA. | The signal outputs from each antenna<br>are combined to display the<br>measurement results for the synthesized<br>signal at one MU88700xA. | The same SISO signal is simultaneously input<br>to each antenna. As a result, RX sensitivity of<br>composite MIMO RX test will be better than<br>SISO RX test by effect of diversity antenna. |

The MT8870A measurements support the following three MIMO functions for up to 4×4 MIMO devices.

\* Recommended product: Mini-Circuits, ZN4PD1-63 + (Frequency range: 2000 MHz to 6000 MHz)

#### **MIMO Measurement Function Phase**



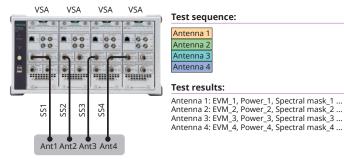
#### **Connection Example for Each MIMO Measurement Function**

Test sequence:

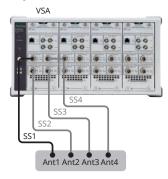
Test results:

Antenna 2

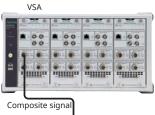
Antenna 3

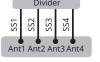

Antenna 1: EVM\_1, Power\_1, Spectral mask\_1 ... Antenna 2: EVM\_2, Power\_2, Spectral mask\_2 ... Antenna 3: EVM\_3, Power\_3, Spectral mask\_3 ...

Antenna 4: EVM\_4, Power\_4, Spectral mask\_4 ...


Antenna 4

# TX Test

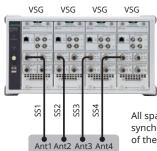

#### True MIMO




#### **Sequential MIMO**



#### **Composite MIMO**

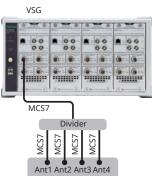





| vg, Spectral mask | Avg               |
|-------------------|-------------------|
| 4                 | wg, Spectral mask |

RX Test

## True MIMO




All spatial streams must be synchoronized to the start of the packet.

#### Sequential MIMO



**Composite MIMO** 



#### **Universal Wireless Test Set MT8870A**

The MT8870A has been specifically designed for the high volume manufacturing test of cellular and connectivity wireless systems. Up to four MU887000A/01A each with a built-in Vector Signal Generator (VSG) and Vector Signal Analyzer (VSA) can be installed in the MT8870A main frame to perform RF tests of both transmitters and receivers. An external PC controls the MT8870A main frame with up to four MU887000A/01A.

| Recommended Configuration for WLAN MIMO Measurements |
|------------------------------------------------------|
|------------------------------------------------------|

|                   |                                   | Sequential MIMO<br>Composite MIMO | True MIMO |     |     |
|-------------------|-----------------------------------|-----------------------------------|-----------|-----|-----|
| Model             | Name                              |                                   | 2×2       | 3×3 | 4×4 |
| MT8870A           | Universal Wireless Test Set       | 1                                 | 1         | 1   | 1   |
| MU887000A/01A     | TRX Test Module                   | 1                                 | 2         | 3   | 4   |
| MU887000A/01A-001 | 6 GHz Frequency Extension         | 1                                 | 2         | 3   | 4   |
| MX887030A         | WLAN 802.11b/g/a/n TX Measurement | 1                                 | 1         | 1   | 1   |
| MX887031A         | WLAN 802.11ac TX Measurement      | 1                                 | 1         | 1   | 1   |
| MV887030A         | WLAN 802.11b/g/a/n Waveforms      | 1                                 | 1         | 1   | 1   |
| MV887031A         | WLAN 802.11ac Waveforms           | 1                                 | 1         | 1   | 1   |



# **Ordering Information**

Please specify the model/order number, name and quantity when ordering. The names listed in the chart below are Order Names. The actual name of the item may differ from the Order Name.

| Model/Order No.                                                  | Name                                                                                                                                                            |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MT8870A                                                          | <b>Main frame</b><br>Universal Wireless Test Set                                                                                                                |
| MT8870A-001<br>MT8870A-101                                       | <b>Options</b><br>GPIB Control<br>GPIB Control Retrofit                                                                                                         |
| MU887000A<br>MU887001A                                           | <b>Test module</b><br>TRX Test Module<br>TRX Test Module                                                                                                        |
| MU887000A-001<br>MU887000A-101<br>MU887000A-002<br>MU887000A-102 | Options for test module<br>6 GHz Frequency Extension<br>6 GHz Frequency Extension Retrofit<br>Audio Measurement Hardware<br>Audio Measurement Hardware Retrofit |
| MU887001A-001<br>MU887001A-101<br>MU887001A-002<br>MU887001A-102 | 6 GHz Frequency Extension<br>6 GHz Frequency Extension Retrofit<br>Audio Measurement Hardware<br>Audio Measurement Hardware Retrofit                            |

| Model/Order No.        | Name                                    |
|------------------------|-----------------------------------------|
|                        | Measurement software                    |
| MX887010A              | Cellular Standards Sequence Measurement |
| MX887011A              | W-CDMA/HSPA Uplink TX Measurement       |
| MX887012A              | GSM/EDGE Uplink TX Measurement          |
| MX887013A              | LTE FDD Uplink TX Measurement           |
| MX887014A              | LTE TDD Uplink TX Measurement           |
| MX887015A              | CDMA2000 Reverse Link TX Measurement    |
| MX887016A              | 1xEV-DO Reverse Link TX Measurement     |
| MX887017A              | TD-SCDMA Uplink TX Measurement          |
| MX887021A              | W-CDMA/HSPA Downlink TX Measurement     |
| MX887023A              | LTE FDD Downlink TX Measurement         |
| MX887030A              | WLAN 802.11b/g/a/n TX Measurement*1     |
| MX887031A              | WLAN 802.11ac TX Measurement*1          |
| MX887032A              | WLAN 802.11p TX Measurement             |
| MX887040A              | Bluetooth TX Measurement                |
| MX887040A-001          | DLE TX Measurement                      |
| MX887050A              | Short Range Wireless Average Power and  |
|                        | Frequency Measurement                   |
| MX887060A              | IEEE 802.15.4 TX Measurement            |
| MX887061A              | Z-Wave TX Measurement                   |
| MX887070A              | FM/Audio TRX Measurement*2              |
| MX887090A              | Multi-DUT Measurement Scheduler         |
|                        | Waveforms                               |
| MV887011A              | W-CDMA/HSPA Downlink Waveforms          |
| MV887012A              | GSM/EDGE Downlink Waveforms             |
| MV887013A              | LTE FDD Downlink Waveforms              |
| MV887014A              | LTE TDD Downlink Waveforms              |
| MV887015A              | CDMA2000 Forward Link Waveforms         |
| MV887016A              | 1xEV-DO Forward Link Waveforms          |
| MV887017A              | TD-SCDMA Downlink Waveforms             |
| MV887021A              | W-CDMA/HSPA Uplink Waveforms            |
| MV887023A              | LTE FDD Uplink Waveforms                |
| MV887030A              | WLAN 802.11b/g/a/n Waveforms*1          |
| MV887031A              | WLAN 802.11ac Waveforms <sup>*1</sup>   |
| MV887032A              | WLAN 802.11p Waveforms <sup>*1</sup>    |
| MV887040A              | Bluetooth Waveforms                     |
| MV887040A-001          | DI E Waveforms                          |
| MV887060A              | IEEE 802.15.4 Waveforms                 |
| MV887061A              | Z-Wave Waveforms                        |
| MV887070A              | EM RDS Waveforms                        |
| MV887100A              | GPS Waveforms                           |
| MV887101A              | Galileo Waveforms                       |
| MV887101A<br>MV887102A | GLONASS Waveforms                       |
| MV887102A              | BeiDou Waveforms                        |
| MV887110A              | DVB-H Waveforms                         |
| MV887111A              | ISDB-T Waveforms                        |
| MV887112A              | ISDB-T Waveforms                        |
| 1010007112A            |                                         |

\*1: Requires MU887000A/01A-001 for 5 GHz (802.11a/n/p/ac) frequency measurements

\*2: Requires MU887000A/01A-002 for Audio Signal measurements