| 리포트 | 기술문서 | 테크-블로그 | 글로벌 블로그 | 원샷 갤러리 | 통신 방송 통계  | 한국 ICT 기업 총람 |

제품 검색

| 네트워크/통신 뉴스 | 기술자료실 | 자유게시판 |  
 
 
섹션 5G 4G LTE C-RAN/Fronthaul Gigabit Internet IPTV/UHD IoT SDN/NFV Wi-Fi Video Streaming KT SK Telecom LG U+ OTT Network Protocol CDN YouTube Data Center
 
스폰서채널 |

 

  스폰서채널 서비스란?
MPLS VPN 기반의 Backhaul & Backbone Network
MPLS VPN based Backhaul & Backbone Network Architecture
By Netmanias (tech@netmanias.com)
banner
코멘트 (0)
16

Thank you for visiting Netmanias! Please leave your comment if you have a question or suggestion.
Transcript
Netmanias 기술문서: MPLS VPN 기반의Backhaul & Backbone Network

2007년12월13일
NMC Consulting Group(tech@netmanias.com)

2
Table of Contents
.MPLS Backhaul Network
.MPLS Backhaul Concept
.Backhaul Connectivity for Residential User
.Backhaul Connectivity for Enterprise User
.Backhaul Network Resiliency
.MPLS Backbone Network
.MPLS Backbone Concept
.MPLS L3 VPN
.MPLS L2 VPN: VPWS
.MPLS L2 VPN: VPLS
.MPLS Fast Recovery

3
MPLS Backhaul Network

4
그림6
그림6
Backhaul Concept
.Customer Separation by QinQ and H-VPLS
.1 S-VID and 1 VC-LSP per access node for residential user
.1 S-VID and 1 VC-LSP per enterprise user
.Single backhaul can support
.All kinds of access node: xDSL, FTTH, WiBro
.Residential TPS service and WiBro service
.Enterprise site-to-site VPN service and Internet service
.Dual-homing architecture between AS (CO) and ES (POP) for redundancy
ES (PE)
AS (PE)
MPLS Backbone
ER
H-VPLS
Active Spoke LSP
Standby Spoke LSP
a3
Residential
a3
xDSL
a3
FTTH
a3
WiBro
a3
TPS Service
a3
WiBro Service
a3
Enterprise
a3
VPN Service
a3
Internet Service
QinQ
POP
CO

5
그림6
그림6
VSI
VSI
ADSL2+
house
ggsn-s
Voice PVC (1/35)
Video PVC (1/36)
Internet PVC (1/37)
Mgmt PVC (0/34)
DSLAM
RG/IAD
AS (PE)
S-VID=DSLAM ID
Voice VLAN (3)
Video VLAN (4)
Internet VLAN (5)
C-VID=Service ID
house
ggsn-s
OLT
PON
ONT
L2 SW
BS
ES (PE)
BRAS
ER
QinQ (Per-Access Node VLAN)
H-VPLS
POP
Active Spoke LSP
Standby Spoke LSP
CO
MTU-S
PE-rs
EMS
Voice VLAN (3)
Video VLAN (4)
Internet VLAN (5)
VC-LSP=Per DSLAM
S-VID=DSLAM ID
GE port
Tunnel-LSP=PE to PE
Voice VLAN (3)
Video VLAN (4)
Internet VLAN  (5)
Mgmt VLAN (1000)
S-VID=OLT ID/RAS ID
Voice VLAN (3)
Video VLAN (4)
Internet VLAN (5)
C-VID=Service ID
EMS
Voice VLAN (3)
Video VLAN (4)
Internet VLAN (5)
VC-LSP=Per OLT/Per BS
S-VID=OLT ID/RAS ID
GE port
Voice VLAN (3)
Video VLAN (4)
S-VID=DSLAM ID
GE port
Voice VLAN (3)
Video VLAN (4)
S-VID=OLT ID/RAS ID
GE port
Internet VLAN (5)
S-VID=DSLAM ID
GE port
Internet VLAN (5)
S-VID=OLT ID/RAS ID
ER
BRAS
RG/ IAD
PON CPE
C-VID=Service ID
C-VID=Service ID
C-VID=Service ID
C-VID=Service ID
QinQ
QinQ
VSI
VSI
VSI
VSI
VPLS
VPLS
VC-LSP to VSI
S-VID to VSI
Q-in-Q
Backhaul Connectivity for Residential User

6
그림6
그림6
VSI
VSI
VSI
VSI
Lbuilding
Lbuilding
ADSL2+
ggsn-s
DSLAM
CE
AS (PE)
S-VID=Enterprise ID (VPN-A)
ggsn-s
OLT
L2 SW
ES (PE)
ER
QinQ (Per-Enterprise VLAN)
H-VPLS
POP
Active Spoke LSP
Standby Spoke LSP
CO
MTU-S
PE-rs
VC-LSP=Per Enterprise VPN (VPN-A)
S-VID=Enterprise ID (VPN-A)
GE port
Tunnel-LSP=PE to PE
S-VID=Enterprise ID (VPN-A)
GE port
GE port
CPE
CE
QinQ
QinQ
VSI
S-VID=Enterprise ID (VPN-B)
S-VID=Enterprise ID (VPN-B)
S-VID=Enterprise ID (VPN-B)
CPE
VSI
VC-LSP=Per Enterprise VPN (VPN-B)
S-VID=Enterprise ID (VPN-C)
VC-LSP=Per Enterprise VPN (VPN-C)
S-VID=Enterprise ID (VPN-C)
GE port
S-VID=Enterprise ID (VPN-C)
CPE
VSI
S-VID=Enterprise ID (VPN-D)
S-VID=Enterprise ID (VPN-D)
S-VID=Enterprise ID (VPN-D)
CPE
VSI
VC-LSP=Per Enterprise VPN (VPN-D)
ER
VPN-A
VPN-B
VPN-C
VPN-D
C-VID=Defined by User
C-VID=Defined by User
VC-LSP to VSI
S-VID to VSI
Q-in-Q
BS
Backhaul Connectivity for Enterprise User

7
a3
a3
a3
a3
a3
a3
ER
AS
BRAS
AN
ES
< Normal >
VRRP Master
Load Balancing
Backhaul Network Resiliency
ER
AS
BRAS
AN
ES
ER
AS
BRAS
AN
ES
ER
AS
BRAS
AN
ES
ER
AS
BRAS
AN
ES
ER
AS
BRAS
AN
ES
VRRP
Active Spoke LSP
Standby Spoke LSP
< Link Fail >
< Node Fail >
< Link Fail >
< Node Fail >
VRRP Master
Load Balancing
VRRP Master
Load Balancing
VRRP Master
Load Balancing
VRRP Master
.RFC 4762: Virtual Private LAN Service (VPLS) Using LDP Signaling, Jan. 2007
.RFC 2338: Virtual Router Redundancy Protocol , April 1998

8
MPLS Backbone Network

9
MPLS Backbone Concept
Metro Ethernet
Backhaul
Metro Ethernet
Backhaul
PE1.CTY1
PE2.CTY1
Metro Ethernet
Backhaul
PE1.CTY2
PE2.CTY2
PE1.CTY4
PE2.CTY4
PE1.CTY5
PE2.CTY5
PE1.CTY6
PE2.CTY6
PE1.CTY7
PE2.CTY7
Metro Ethernet
Backhaul
City 2
Metro Ethernet
Backhaul
Metro Ethernet
Backhaul
City 3
PE1.CTY3
PE2.CTY3
City 4
City 1
Metro EthernetBackhaul
City 5
City 6
City 7
CR1
CR2
CR3
Metro Ethernet
Backhaul
Metro Ethernet
Backhaul
MPLS L3 Internet VPN
MPLS L3 VoIP VPN
MPLS L3 Video VPN
MPLS L3 Enterprise VPN
MPLS L2 VPN (VPWS)
MPLS L2 VPN (VPLS)
.MPLS L3 VPN
.Per-Service VPN
.Internet VPN: Residential ADSL/FTTH/WiBro Internet Access, Enterprise ADSL/FTTB/WiBro Internet Access Service
.Voice MPLS VPN
.Video MPLS VPN
.Per-Enterprise VPN
.Enterprise MPLS L3 VPN
.MPLS L2 VPN
.Per-Enterprise VPN
.Enterprise VPWS VPN
.Enterprise VPLS VPN
PE
PE

10
ADSL Case
DSLAM
Residential Internet VLAN
(C-VID=Internet, S-VID=AN1)
Residential Voice VLAN
(C-VID=Voice, S-VID=AN1)
Residential Video VLAN
(C-VID=Video, S-VID=AN1)
MPLS L3 Internet VPN (LSP to BR)
PE/BR
PE
BRAS
VRF
PE2
Per-Enterprise VLAN(C-VID=null, S-VID=Ent. A)
MPLS L3 Internet VPN (LSP to PE:P2P)
MPLS L3 VPN (LSP to PE 2)
VRF
VRF
MPLS L3 Voice VPN (LSP to SAR)
MPLS L3 Voice VPN (LSP to PE: Data)
VRF
MPLS L3 Video VPN (LSP to SAR)
Per-Enterprise VLAN
(C-VID=null, S-VID=Ent. B)
VRF
MPLS L2 VPN (VPWS)
Per-Enterprise VLAN
(C-VID=Private Use, S-VID=Ent. C)
VSI
MPLS L3 VPN (LSP to PE 3)
MPLS L2 VPN (LSP to PE 2)
Per-Enterprise VLAN(C-VID=Private Use, S-VID=Ent. D)
Internet PVC (1/37)
Voice PVC (1/35)
Video PVC (1/36)
A Single PVC
A Single PVC
A Single PVC
A Single PVC
VSI
MPLS L2 VPN (LSP to PE 3)
PE/SAR
PE3
H-VPLS
VRF
VRF
VRF
ResidentialInternet Access
Residential
Voice
Residential
Video
Enterprise
Internet Access
Enterprise
L3 VPN
Enterprise
L2 VPN (PtP)
Enterprise
L2 VPN (PtMP)
VRF
VRF
VRF
VRF
VRF
VSI
VSI
VSI
VSI
VSI
VSI
VSI
VSI
VSI
VSI
VSI
VSI
VSI
VRF
VRF
VSI
VSI
VSI
PPPoE
DHCP
DHCP
Static/Public Subnet
Private Addressing and Routing
Private Addressing and Routing
Private Addressing and Routing
Per-Service VRF (Internet)
VRF
VRF
VRF
Per-Service VRF (Voice)
Per-Service VRF (Video)
AS
ES

11
FTTH Case
OLT
MPLS L3 Internet VPN (LSP to BR)
PE/BR
PE
BRAS
VRF
PE2
MPLS L3 Internet VPN (LSP to PE:P2P)
MPLS L3 VPN (LSP to PE 2)
VRF
VRF
MPLS L3 Voice VPN (LSP to SAR)
MPLS L3 Voice VPN (LSP to PE: Data)
VRF
MPLS L3 Video VPN (LSP to SAR)
VRF
MPLS L2 VPN (VPWS)
VSI
MPLS L3 VPN (LSP to PE 3)
MPLS L2 VPN (LSP to PE 2)
C-VID=Internet(5)
C-VID=Voice(3)
C-VID=Video(4)
C-VID=Ent. A
C-VID=Ent. B
C-VID=Ent. C
C-VID=Ent. D
VSI
MPLS L2 VPN (LSP to PE 3)
PE/SAR
PE3
H-VPLS
VRF
VRF
VRF
Residential
Internet Access
Residential
Voice
Residential
Video
Enterprise
Internet Access
Enterprise
L3 VPN
Enterprise
L2 VPN (PtP)
Enterprise
L2 VPN (PtMP)
VRF
VRF
VRF
VRF
VRF
VSI
VSI
VSI
VSI
VSI
VSI
VSI
VSI
VSI
VSI
VSI
VSI
VSI
VRF
VRF
VSI
VSI
VSI
Residential Internet VLAN
(C-VID=Internet, S-VID=AN1)
Residential Voice VLAN
(C-VID=Voice, S-VID=AN1)
Residential Video VLAN
(C-VID=Video, S-VID=AN1)
DHCP
DHCP
DHCP
Static/Public Subnet
Private Addressing and Routing
Private Addressing and Routing
Private Addressing and Routing
Per-Service VRF (Internet)
VRF
VRF
VRF
Per-Service VRF (Voice)
Per-Service VRF (Video)
AS
ES
Per-Enterprise VLAN
(C-VID=null, S-VID=Ent. A)
Per-Enterprise VLAN
(C-VID=null, S-VID=Ent. B)
Per-Enterprise VLAN
(C-VID=Private Use, S-VID=Ent. C)
Per-Enterprise VLAN
(C-VID=Private Use, S-VID=Ent. D)

12
WiBro Case
MPLS L3 Internet VPN (LSP to BR)
PE/BR
PE
VRF
PE2
MPLS L3 Internet VPN (LSP to PE:P2P)
VRF
VRF
MPLS L3 Voice VPN (LSP to SAR)
MPLS L3 Voice VPN (LSP to PE: Data)
VRF
MPLS L3 Video VPN (LSP to SAR)
CID=Internet CID
CID=Voice CID
CID=Video CID
PE/SAR
PE3
VRF
VRF
VRF
Residential
Internet Access
Residential
Voice
Residential
Video
Residential Internet VLAN
(C-VID=Internet, S-VID=RAS1)
Residential Voice VLAN
(C-VID=Voice, S-VID=RAS1)
Residential Video VLAN
(C-VID=Video, S-VID=RAS1)
BS
ASN-GW
L3
Per-Service VRF (Internet)
VRF
VRF
VRF
Per-Service VRF (Voice)
Per-Service VRF (Video)
GRE tunnel
DHCP
AS
ES

13
VPN Service
.MPLS L3 VPN
.MPLS L2 VPN
.Virtual Private Wire Service (VPWS)
.Virtual Private LAN Service (VPLS)

14
MPLS L3 VPN for Enterprise
RFC 2547bis defines a mechanism that allows service providers to use their IP backbone to
provide VPN services to their customers. RFC 2547bis VPNs are also known as BGP/MPLS
VPNs because BGP is used to distribute VPN routing information across the provider\'s
backbone and because MPLS is used to forward VPN traffic from one VPN site to another.  
Metro Ethernet
Backhaul
Metro Ethernet
Backhaul
PE1.CTY1
PE2.CTY1
router
CE
VPN A
Metro Ethernet
Backhaul
PE1.CTY2
PE2.CTY2
PE1.CTY4
PE2.CTY4
PE1.CTY5
PE2.CTY5
PE1.CTY6
PE2.CTY6
PE1.CTY7
PE2.CTY7
router
CE
VPN A
Metro Ethernet
Backhaul
City 2
router
CE
Metro Ethernet
Backhaul
router
CE
Metro Ethernet
Backhaul
City 3
PE1.CTY3
PE2.CTY3
City 4
City 1
Metro Ethernet
Backhaul
City 5
City 6
City 7
CR1
CR2
CR3
router
CE
CE
PE
PE
CE
P
P
IP/MPLS Network

15
Tunnel LSP Setup: RSVP-TE
PE1.CTY1
PE2.CTY1
PE1.CTY5
PE2.CTY5
CR1
CR2
CR3
PATH ERO = {CR1, CR2, PE1.CTY5}
PATH
ERO = {CR2, PE1.CTY5}
PATH
ERO = {PE1.CTY5}
RESV
Label = 17
RESV
Label = 20
RESV
Label  = 3
Ingress Routing Table

In
Out(port/label)

IP Route
2/17

MPLS Table

In(port/Label)
Out(port/label)

03월 17일
6/20

MPLS Table

In(port/Label)
Out(port/label)

02월 20일
5/3

RVSP-TE PATH Message.Establish state and request label assignment
.PE1.CTY1 transmit a PATH message addressed to PE1.CTY5
.Label Request Object
.ERO = {Strict CR1, strict CR2, strict PE1.CTY5}
.PRO = {PE1.CTY1 IP address, store and add IP hop address}
.Session object identifies LSP name
.Session Attribute: Priority, Preemption and Fast Reroute
.Flow-Spec: Request Bandwidth Reservation
RVSP-TE RESV Message.Distribute labels and reserve resource
.PE1.CTY5 transmits a RESV message to PE1.CTY1
.Label = 3
.Session object to uniquely identify the LSP
.CR2 and CR1
.Stores “Outbound” label and allocate an “Inbound” label
.Transmits RESV with inbound label to upstream LSR
.PE1.CTY1 binds label to FEC
Tunnel LSP
RSVP-TE for Traffic Engineering
RFC 3209, RSVP-TE: Extensions to RSVP for LSP Tunnels, December 2001

16
Constraint-Based Routing
smallblockshadow
smallblockshadow
smallblockshadow
Routing Table
Traffic EngineeringDatabase (TED)
smallblockshadow
User
Constraints
Constrained ShortestPath First (CSPF)
smallblockshadow
Explicit Route
smallblockshadow
RSVP Signaling
1) Store information from IGP flooding
3) Examine user defined constraints
4) Calculate the physical path for the LSP
5) Represent path as an explicit route
6) Pass ERO to RSVP for signaling
2) Store traffic engineering information
Extended IGP
(OSPF-TE, IS-IS TE)

17
CE-PE Routing: OSPF, RIP, BGP, Static RoutePE-PE Routing: MP-iBGP
Metro Ethernet
Backhaul
PE1.CTY1
PE2.CTY1
PE1.CTY5
PE2.CTY5
Metro EthernetBackhaul
City1
City5
CR1
CR2
CR3
router
router
Site-2, VPN-B
10.1.2.0/24
RIP
Site-2, VPN-A
10.1.2.0/24
IS-IS
.IGP (IS-IS)
advertises
IPv4 route
router
router
Site-1, VPN-B
10.1.1.0/24
RIP
Site-1, VPN-A10.1.1.0/24IS-IS
CE2
CE2
CE1
CE1
VRF Green

Destination
BGP Next Hop
Inner Label

10.1.2.0/24
PE1.CTY5
10

VRF Yellow

Destination
BGP Next Hop
Inner Label

10.1.2.0/24
PE1.CTY5
12

VRF Green
VRF Green
MP-iBGP.Destination = RD_Green:10.1.2/24
.Label = 10
.BGP Next Hop = PE1.CTY5
.Route Target = Green
.IGP (IS-IS)
advertises
IPv4 route
.MP-iBGP advertises VPNv4 route with MPLS label and RTs.
.RT indicate to which VRF the route is imported. RD is removed from VPNv4 route.
IPv4 route is inserted into VRF Green routing table.
.IPv4 route is inserted in VRF Green routing table.
.IPv4 route is redistributed into MP-iBGP. RD is added to IPv4 route to make it a VPNv4 route. RTs are added.
CE
PE
PE
CE
P
P
MPLS L3 VPN for Enterprise: VPN Route Distribution

18
Metro Ethernet
Backhaul
PE1.CTY1
PE2.CTY1
PE1.CTY5
PE2.CTY5
Metro Ethernet
Backhaul
City 1
City 5
CR1
CR2
CR3
router
router
Site-2, VPN-B
10.1.2.0/24
RIP
Site-2, VPN-A
10.1.2.0/24
IS-IS
router
router
Site-1, VPN-B
10.1.1.0/24
RIP
Site-1, VPN-A
10.1.1.0/24
IS-IS
CE2
CE2
CE1
CE1
VRF Green

Destination
BGP Next Hop
Inner Label

10.1.2.0/24
PE1.CTY5
10

VRF Yellow

Destination
BGP Next Hop
Inner Label

10.1.2.0/24
PE1.CTY5
12

Global Routing Table

Destination
IGP Next Hop
Tunnel Label

PE1.CTY5
CR1
25

MPLS Table

In (port/label)
Out (port/label)

01월 25일
3/30

IGP Label(25)

VPN Label(10)

10.1.2.5

IGP Label(30)

VPN Label(10)

10.1.2.5

IGP Label(0)

VPN Label(10)

10.1.2.5

Egress PE router(PE1.CTY5) removes top label, uses inner label to select which VPN/CE to forward the packet to.
Inner label is removed and packet sent to
CE2 router
10.1.2.5

VRF Green
VRF Green
PE1.CTY1 router receives normal IP packet from CE1 router.
PE1.CTY1 router does “IP Longest Match” from VRF, finds iBGP next hop PE1.CTY5 and imposes a stack of labels
P routers switch the packet based on the IGP Label (top label)
MPLS Table

Incoming (port/Inner label)
Outgoing interface

01월 10일
if2

10.1.2.5

MPLS L3 VPN for Enterprise: Forwarding Customer Traffic Across the BGP/MPLS Backbone

19
Metro Ethernet
Backhaul
Metro Ethernet
Backhaul
PE2.CTY1
PE1.CTY5
PE2.CTY5
PE1.CTY7
PE2.CTY7
Metro Ethernet
Backhaul
City 1
City 5
City 7
CR1
CR2
CR3
router
CE2
router
router
CE3
CE1
A pair of VC-LSPs
PE1.CTY1
S-VID 200/Eth10
S-VID 200/Eth20
S-VID 200/Eth30
PE1.CTY1
Per-Enterprise
Hierarchical shaping
(PIR/CIR)
S-VID
200
S-VID
201
I
T
V
RT Video
RT Voice
Best Effort
Mission Critical
M
Eth10
PE1.CTY5
Per-Enterprise
Hierarchical shaping
(PIR/CIR)
S-VID
200
S-VID
201
I
T
V
RT Video
RT Voice
Best Effort
Mission Critical
M
Eth20
100Mbps shaper
Customer
Classification
(VC-Label)
Application
Classification
(5-Tuple)
5Mbps shaper
PE1.CTY7
Per-Enterprise
Hierarchical shaping
(PIR/CIR)
S-VID
200
S-VID
201
I
T
V
RT Video
RT Voice
Best Effort
Mission Critical
M
Eth30
5Mbps shaper
Service Rate Control at each PE participating a VPLS instance.Upstream Rate Control: Ingress Rate Limiting
.Downstream Rate Control: Egress Rate Shaping
.Granularity of Rate Control: 1Mbps
A pair of VC-LSPs
A pair of VC-LSPs
VPN A
VPN A
VPN A
MPLS L3 VPN: Rate Control Per-Customer and Per-Site

20
Metro Ethernet
Backhaul
PE1.CTY1
PE2.CTY1
PE1.CTY5
PE2.CTY5
Metro EthernetBackhaul
City 1
City 5
CR1
CR2
CR3
router
Site-2, VPN-A
Branch Office
Site-1, VPN-A
Headquarter
CE2
CE1
router
QinQ (Per-enterprise VLAN)
H-VPLS
Tunnel Signaling (LDP/RSVP-TE)
VPN Routing (OSPF, RIP, Static, etc.)
VPN Route and Label Distribution (MG-iBGP)
IGP (IS-IS)
QinQ (Per-enterprise VLAN)
VLL/
H-VPLS
VPN Routing (OSPF, RIP, Static, etc.)
Metro Aggregation
IP/MPLS Backbone
Metro Aggregation
CE
PE
PE
CE
P
P
VRF Green
VRRP between VRFs
S-VID 100
S-VID 100
VRF Green
VRF Green
vc-lsp 100
vc-lsp 200
S-VID 100
.VRF configuration in 2 PE routers. Backhaul is connected to PE through 2 VLANs
.VRRP redundancy per VRF between PE routers (255 VRRP instance for VRF)
.Ex) PE redundancy in Headquarter site, and single PE in Branch office
S-VID 100
MPLS L3 VPN for Enterprise: PE Redundancy

21
Benefits of BGP/MPLS VPNs
The major objective of BGP/MPLS VPNs is to simplify network operations for customers while allowing the service provider to offer scalable, revenue-generating, value-added services. BGP/MPLS VPNs has many benefits, including the following.
.There are no constraints on the address plan used by each VPN customer. The customer can use either globally unique or private IP address spaces. From the service provider\'s perspective, different customers can have overlapping address spaces.
.The CE router at each customer site does not directly exchange routing information with other CE routers. Customers do not have to deal with inter-site routing issues because inter-site routing issues are the responsibility of the service provider.
.VPN customers do not have a backbone or a virtual backbone to administer. Thus, customers do not need management access to PE or P routers.
.Providers do not have a separate backbone or virtual backbone to administer for each customer VPN. Thus, providers do not require management access to CE routers.
.The policies that determine whether a specific site is a member of a particular VPN are the policies of the customer. The administrative model for RFC 2547bis VPNs allows customer policies to be implemented by the provider alone or by the service provider working together with the customer.
.The VPN can span multiple service providers. While this capability of BGP/MPLS VPNs is important, this paper does not describe inter-provider VPN solutions.
.Without the use of cryptographic techniques, security is equivalent to that supported by existing Layer 2 (ATM or Frame Relay) backbone networks.
.Service providers can use a common infrastructure to deliver both VPN and Internet connectivity services.
.Flexible and scalable QoS for customer VPN services is supported through the use of the experimental bits in the MPLS shim header or by the use of traffic engineered LSPs (signaled by RSVP).
.The RFC 2547bis model is link layer (Layer 2) independent.

22
MPLS L3 VPN for Enterprise
Features

Maximum Number of 802.1Q (VLAN) Circuits
26K

Maximum Number of 802.1ad (QinQ) Circuits
26K

Maximum Number of LSPs (LDP)
2.4K

Maximum Number of LSPs (RSVP-TE)
50K

Maximum Number of VRF
4K

Maximum VPN Route Entries per VRF
500K

Maximum Number of MPLS L3 VPN  Instances
4K

Juniper M-series

23
Metro Ethernet
Backhaul
PE1.CTY1
PE2.CTY1
PE1.CTY5
PE2.CTY5
Metro Ethernet
Backhaul
City 1
City 5
CR1
CR2
CR3
Site-2, VPN-B
Site-2, VPN-A
Site-1, VPN-B
Site-1, VPN-A
CE2
CE1
CE1
router
router
Per-enterprise VLAN (QinQ)
VLL/
H-VPLS
Tunnel Signaling (LDP/RSVP-TE)
PW Signaling (Martini Signaling: Targeted LDP)
IGP (IS-IS)
VLL/
H-VPLS
Metro Aggregation
IP/MPLS Backbone
Metro Aggregation
Martini signalingT-LDPDU-LDP
Point-to-Point Transparent LAN Service (Customer VLAN (C-VID))
PW (vc-lsp)
Per-enterprise VLAN (QinQ)
router
router
CE2
Standard:
RFC 4448 (Martini), Encapsulation Methods for Transport of Ethernet over MPLS Networks, April 2006  
RFC 4447 (Martini), Pseudowire Setup and Maintenance Using LDP, April 2006
MPLS L2 VPN: VLL/VPWS/EoMPLS Service

24
MPLS L2 VPN: VLL/VPWS/EoMPLS Service
Metro Ethernet
Backhaul
PE1.CTY1
PE2.CTY1
PE1.CTY5
PE2.CTY5
Metro Ethernet
Backhaul
City 1
City 5
CR1
CR2
CR3
router
router
Site-2, VPN-B
Site-2, VPN-A
router
router
Site-1, VPN-B
Site-1, VPN-A
CE2
CE2
CE1
CE1
PE1.CTY5 configured:
Local S-VID200 on Ethernet20 to be configured with VCID 2400 going to PE1.CTY1.
PE1.CTY1 configured:Local S-VID200 on Ethernet30 to be configured with VCID 2400 going to PE1.CTY5.
VCID (Virtual Circuit ID) represents the provisioned ID for the “circuit” between the (Ethernet port + VLAN ID) entities provisioned in the 2 PEs (PE1.CTY1 and PE1.CTY5)
Tunnel LSP
1. Configuring PE
Metro Ethernet
Backhaul
PE1.CTY1
PE2.CTY1
PE1.CTY5
PE2.CTY5
Metro Ethernet
Backhaul
City 1
City 5
CR1
CR2
CR3
router
router
Site-2, VPN-B
Site-2, VPN-A
router
router
Site-1, VPN-B
Site-1, VPN-A
CE2
CE2
CE1
CE1
Tunnel LSP
PE1.CTY5 binds the VCID 2400 to vc-label 2000
DU-LDP Label Mapping MessageVC FEC TLV:.VC Type = Ethernet
.VCID = 2400VC Label TLV:
.vc-label = 2000
PE1.CTY1 binds vc-label 2000 to local VLAN 200 on Eth30 using VCID 2400 as common ID
S-VID 200/Eth30
S-VID 200/Eth20
S-VID 200/Eth30
S-VID 200/Eth20
2. VC Label Mapping and DU-LDP Signaling
VCID 2400

Port
VLAN(S-VID)
VC-Label
Tunnel Label

30
200
2000
100

Unidirectional representation: same steps for PE1.CTY1 to PE1.CTY5 direction
Vc-label 2000

25
MPLS L2 VPN: VLL/VPWS/EoMPLS Service
Tunnel Label(25)

VC Label(10)

D-MAC/S-MAC

S-VID

C-VID

IP Packet

Metro Ethernet
Backhaul
PE1.CTY1
PE2.CTY1
PE1.CTY5
PE2.CTY5
Metro Ethernet
Backhaul
City 1
City 5
CR1
CR2
CR3
router
router
Site-2, VPN-B
Site-2, VPN-A
Site-1, VPN-B
Site-1, VPN-A
CE2
CE2
CE1
Tunnel LSP
S-VID 200/Eth30
S-VID 200/Eth20
3. Packet Forwarding
VCID 2400

Port
VLAN(S-VID)
VC-Label
Tunnel Label

30
200
2000
100

MPLS Table

In (port/label)
Out (port/label)

01월 25일
3/30

Vc-label 2000
D-MAC/S-MAC

C-VID

IP Packet

Tunnel Label(30)

VC Label(10)

D-MAC/S-MAC

S-VID

C-VID

IP Packet

router
D-MAC/S-MAC

S-VID(200)

C-VID

IP Packet

D-MAC/S-MAC

S-VID(200)

C-VID

IP Packet

Tunnel Label(0)

VC Label(10)

D-MAC/S-MAC

S-VID

C-VID

IP Packet

D-MAC/S-MAC

C-VID

IP Packet

router
CE1

26
EoMPLS Service: QoS
Metro Ethernet
Backhaul
PE1.CTY1
PE2.CTY1
PE1.CTY5
PE2.CTY5
Metro EthernetBackhaul
City 1
City 5
CR1
CR2
CR3
router
router
Site-2, VPN-B
Site-2, VPN-A
Site-1, VPN-B
Site-1, VPN-A
CE2
CE2
CE1
Tunnel LSP
S-VID 200/Eth30
S-VID 200/Eth20
PW
router
router
CE1
PE1.CTY1
Per-Enterprise
Hierarchical shaping
(PIR/CIR)
S-VID
200
S-VID
201
I
T
V
RT Video
RT Voice
Best Effort
Mission Critical
M
S-VID202
Eth30
PE1.CTY5
Per-Enterprise
Hierarchical shaping
(PIR/CIR)
S-VID
200
S-VID201
I
T
V
RT Video
RT Voice
Best Effort
Mission Critical
M
S-VID
202
Eth20
Per-Enterprise Rate Shaping (1Mbps increment from 1Mbps to 1Gbps)
5Mbps shaper
A customer traffic is classified to the application level and mapped to 4 Traffic class
Customer
Classification
Application
Classification
Virtual Leased Line
3Mbps shaper
20Mbps shaper
5Mbps shaper
3Mbps shaper
20Mbps shaper

27
VPLS Service
Metro Ethernet
Backhaul
PE1.CTY1
PE2.CTY1
PE1.CTY5
PE2.CTY5
Metro Ethernet
Backhaul
City 1
City 5
CR1
CR2
CR3
Site-2, VPN-B
Site-2, VPN-A
Site-1, VPN-B
Site-1, VPN-A
CE2
CE1
CE1
router
router
Per-enterprise VLAN(QinQ)
VLL/
H-VPLS
Tunnel Signaling (LDP/RSVP-TE)
PW Signaling (Martini Signaling: Targeted LDP)
IGP (IS-IS)
VLL/
H-VPLS
Metro Aggregation
IP/MPLS Backbone
Metro Aggregation
Martini signaling
T-LDP
DU-LDP
Point-to-Multi-Point Transparent LAN Service
VPLS (Full-Meshed PW)
Per-enterprise VLAN(QinQ)
router
router
CE2
PE1.CTY7
PE2.CTY7
PE1.CTY3
PE2.CTY3
City 7
Standard:
RFC 4762: Virtual Private LAN Service (VPLS) Using LDP Signaling, Jan. 2007
RFC 4761: RFC 4761 on Virtual Private LAN Service (VPLS) Using BGP for Auto-Discovery and Signaling, Jan. 2007
RFC 4664: Framework for Layer 2 Virtual Private Networks (L2VPNs), Sep. 2006
VSI
VSI
VSI
VSI

28
VPLS Reference Model
Metro EthernetBackhaul
Metro Ethernet
Backhaul
PE1.CTY1
PE2.CTY1
PE1.CTY5
PE2.CTY5
PE1.CTY7
PE2.CTY7
Metro EthernetBackhaul
City 1
City 5
City 7
CR1
CR2
CR3
Lbuilding
Lbuilding
CE
router
router
CE
router
router
Lbuilding
CE
router
router
CE
MPLS Tunnel LSP (Full-Mesh)
Pseudo Wire (a pair of vc-lsp)
VSI Green
VSI Violet
VSI Green
VSI Violet
VSI Green
VSI Violet
CE
CE

29
VPLS Instance Creation: PW Signaling
Metro EthernetBackhaul
Metro Ethernet
Backhaul
PE2.CTY1
PE1.CTY5
PE2.CTY5
PE1.CTY7
PE2.CTY7
Metro Ethernet
Backhaul
City1
City5
City7
CR1
CR2
CR3
Lbuilding
CE
router
router
CE
router
router
Lbuilding
CE
router
router
CE
CE
CE
Use vc-label 201 for VCID 1000 when sending to me
FIB for VPLS 1000 (PE1.CTY1)

MAC
Location
Interface

Local
Eth10, S-VID 200

Remote
Tunnel to PE1.CTY5(vc-lsp102)

Remote
Tunnel to PE1.CTY7(vc-lsp103)

PW12
Use vc-label 102 for VCID 1000 when sending to me
T-LDP(PE1.CTY1.PE1.CTY5): For SVC-ID 1000, use VC-label 201 when sending to me
T-LDP(PE1.CTY5.PE1.CTY1): For SVC-ID 1000, use VC-label 102 when sending to me
T-LDP(PE1.CTY1.PE1.CTY7): For SVC-ID 1000, use VC-label 301 when sending to me
T-LDP(PE1.CTY7.PE1.CTY1): For SVC-ID 1000, use VC-label 103 when sending to me
T-LDP(PE1.CTY5.PE1.CTY7): For SVC-ID 1000, use VC-label 302 when sending to me
T-LDP(PE1.CTY7.PE1.CTY5): For SVC-ID 1000, use VC-label 203 when sending to me
T-LSP signaling for creating PW12
PE1.CTY1
1. T-LSP signaling for creating Full-Mesh PW
2. VPLS Instance (VSI) Creation
FIB for VPLS 1000 (PE1.CTY5)

MAC
Location
Interface

Local
Eth20, S-VID 200

Local
Eth20, S-VID 300

Remote
Tunnel to PE1.CTY1(vc-lsp201)

Remote
Tunnel to PE1.CTY7(vc-lsp203)

FIB for VPLS 1000 (PE1.CTY7)

MAC
Location
Interface

Local
Eth30, S-VID 200

Remote
Tunnel to PE1.CTY5(vc-lsp302)

Remote
Tunnel to PE1.CTY1(vc-lsp301)

S-VID 200/Eth10
S-VID 200/Eth20
S-VID 200/Eth30
S-VID 300/Eth20

30
3. Data Forwarding (VPLS MAC Learning)
Metro Ethernet
Backhaul
Metro Ethernet
Backhaul
PE2.CTY1
PE1.CTY5
PE2.CTY5
PE1.CTY7
PE2.CTY7
Metro Ethernet
Backhaul
City1
City5
City7
CR1
CR2
CR3
Lbuilding
Lbuilding
CE
router
router
CE
router
router
Lbuilding
CE
router
router
CE
CE
CE
FIB for VPLS 1000 (PE1.CTY1)

MAC
Location
Interface

M1
Local
Eth10, S-VID 200

Remote
Tunnel to PE1.CTY5(vc-lsp102)

Remote
Tunnel to PE1.CTY7(vc-lsp103)

PW12
PE1.CTY1
FIB for VPLS 1000 (PE1.CTY5)

MAC
Location
Interface

Local
Eth20, S-VID 200

Local
Eth20, S-VID 300

M1
Remote
Tunnel to PE1.CTY1(vc-lsp201)

Remote
Tunnel to PE1.CTY7(vc-lsp203)

FIB for VPLS 1000 (PE1.CTY7)

MAC
Location
Interface

Local
Eth30, S-VID 200

M1
Remote
Tunnel to PE1.CTY5(vc-lsp302)

Remote
Tunnel to PE1.CTY1(vc-lsp301)

S-VID 200/Eth10
S-VID 200/Eth20
S-VID 200/Eth30
Once the VPLS instance with vc-id 1000 has been created, the first packets can be sent and the MAC learning process starts. Assume M1 is sending a packet to PE1.CTY5 destined for M2 (M2 and M1 are each identified by a unique MAC address)..PE1.CTY1 receives the packet and learns (from the source MAC address) that M1 can be reached on local port Eth 10, S-VID 200; itstores this information in the FIB for vc-id 1000.
.PE1.CTY1 does not yet know the destination MAC address M2, so it floods the packet to PE1.CTY5 with VC label 102 (on the corresponding MPLS outer tunnel) and to PE1.CTY7 with VC label 103 (on the corresponding MPLS outer tunnel).
.PE1.CTY5 learns from VC label 201 that M1 is behind PE1.CTY1; it stores this information in the FIB for vc-id 1000.
.PE1.CTY7 learns from VC label 302 that M1 is behind PE1.CTY1; it stores this information in the FIB for vc-id 1000.
Tunnel Label(25)

VC Label(102)

D-MAC = M2

S-MAC = M1

S-VID = 200

C-VID = 100

IP Packet

D-MAC = M2

S-MAC = M1

S-VID = 200

C-VID = 100

IP Packet

M1
S-VID 300/Eth20
M2
M3
M4
Tunnel Label(15)

VC Label(103)

D-MAC = M2

S-MAC = M1

S-VID = 200

C-VID = 100

IP Packet

D-MAC = M2

S-MAC = M1

S-VID = 200

C-VID = 100

IP Packet

D-MAC = M2

S-MAC = M1

S-VID = 300

C-VID = 100

IP Packet

VPLS MAC Learningand Packet Forwarding

31
.PE1.CTY5 strips off label 102, does not know the destination M2 and floods the packet on ports Eth 20, S-VID 200 and Eth20, S-VID 300; PE1.CTY5 does not flood the packet to PE1.CTY7 because of the split horizon rule.
.PE1.CTY7 strips off label 103, does not know the destination M2 and sends the packet on port Eth30, S-VID 200; PE1.CTY7 does notflood the packet to PE1.CTY5 because of the split horizon rule.
.M2 receives the packet.When M2 receives the packet from M1, it replies with a packet to M1:
.PE1.CTY5 receives the packet from M2 and learns that M2 is on local port Eth 20, S-VID 200; it stores this information in the FIB for vc-id 1000.
.PE1.CTY5 already knows that M1 can be reached via PE1.CTY1 and therefore only sends the packet to PE1.CTY1 using VC label 201.
.PE1.CTY1 receives the packet for M1; it knows that M1 is reachable on port Eth 10, S-VID 200.
.M1 receives the packet.
Metro EthernetBackhaul
Metro Ethernet
Backhaul
PE2.CTY1
PE1.CTY5
PE2.CTY5
PE1.CTY7
PE2.CTY7
Metro Ethernet
Backhaul
City1
City5
City7
CR1
CR2
CR3
Lbuilding
Lbuilding
CE
router
router
CE
router
router
Lbuilding
CE
router
router
CE
CE
CE
PW12
PE1.CTY1
S-VID 200/Eth10
S-VID 200/Eth20
S-VID 200/Eth30
Tunnel Label(12)

VC Label(201)

D-MAC = M1

S-MAC = M2

S-VID = 200

C-VID = 100

IP Packet

D-MAC = M1

S-MAC = M2

S-VID = 200

C-VID = 100

IP Packet

M1
S-VID 300/Eth20
M2
M3
M4
D-MAC = M1

S-MAC = M2

S-VID = 200

C-VID = 100

IP Packet

FIB for VPLS 1000 (PE1.CTY1)

MAC
Location
Interface

M1
Local
Eth10, S-VID 200

M2
Remote
Tunnel to PE1.CTY5(vc-lsp102)

Remote
Tunnel to PE1.CTY7(vc-lsp103)

FIB for VPLS 1000 (PE1.CTY5)

MAC
Location
Interface

M2
Local
Eth20, S-VID 200

Local
Eth20, S-VID 300

M1
Remote
Tunnel to PE1.CTY1(vc-lsp201)

Remote
Tunnel to PE1.CTY7(vc-lsp203)

FIB for VPLS 1000 (PE1.CTY7)

MAC
Location
Interface

Local
Eth30, S-VID 200

M1
Remote
Tunnel to PE1.CTY5(vc-lsp302)

Remote
Tunnel to PE1.CTY1(vc-lsp301)

VPLS MAC Learningand Packet Forwarding

32
Metro Ethernet
Backhaul
Metro Ethernet
Backhaul
PE2.CTY1
PE1.CTY5
PE2.CTY5
PE1.CTY7
PE2.CTY7
Metro Ethernet
Backhaul
City1
City5
City7
CR1
CR2
CR3
Lbuilding
Lbuilding
CE
router
router
CE
router
router
Lbuilding
CE
router
router
CE
CE
CE
PW12
PE1.CTY1
S-VID 200/Eth10
S-VID 200/Eth20
S-VID 200/Eth30
PE1.CTY1
Per-Enterprise
Hierarchical shaping
(PIR/CIR)
S-VID
200
S-VLAN
201
I
T
V
RT Video
RT Voice
Best Effort
Mission Critical
M
Eth10
PE1.CTY5
Per-Enterprise
Hierarchical shaping
(PIR/CIR)
S-VID
200
S-VLAN
201
I
T
V
RT Video
RT Voice
Best Effort
Mission Critical
M
Eth20
100Mbps shaper
Customer
Classification
Application
Classification
5Mbps shaper
PE1.CTY7
Per-Enterprise
Hierarchical shaping
(PIR/CIR)
S-VID
200
S-VLAN
201
I
T
V
RT Video
RT Voice
Best Effort
Mission Critical
M
Eth30
5Mbps shaper
Service Rate Control At Each PE participating a VPLS instance.Upstream Rate Control: Ingress Rate Limiting
.Downstream Rate Control: Egress Rate Shaping
.Granularity of Rate Control: 1Mbps
PW13
PW23
VPLS Rate Control Per-Customer and Per-Site

33
Features

Maximum number of 802.1Q (VLAN) Circuits
26K

Maximum number of 802.1ad (QinQ) Circuits
26K

Maximum number of LSPs (LDP)
2.4K

Maximum number of LSPs (RSVP-TE)
50K

Maximum number of VPWS instances
16K

Maximum number of VPLS instances
2K

Maximum number of MAC addresses
850K

MPLS L2 VPN for Enterprise: Scaling Characteristics
Juniper M-series

34
MPLS Protection

35
Path Protection: Secondary Path
1. Outage1) Link Failure2) Node Failure (RSVP Hello)
PE1.CTY1
PE2.CTY1
PE1.CTY5
PE2.CTY5
CR1
CR2
Primary LSP
Secondary LSP
2. RSVP Patherr and Resvtear
unicast to ingress PE
.Ingress PE switches traffic to pre-established secondary path
.Secondary LSP (Standby LSP Case)
.Path: Pre-computed (CSPF)
.BW Reservation: Pre-Signaled (RSVP-TE)
1. Secondary LSP: Pre-computed/Pre-signaled backup LSP
.Secondary paths support the configuration of primary and secondary physical paths for an LSP to protect against link and transit node forwarding plane failures.
.The primary path is the preferred path while the secondary path is used as an alternative route when the primary path fails.
.There are two types of secondary paths: standby and non-standby.
.A standby secondary path is pre-computed and pre-signaled while a non-standby secondary path is pre-computed but is not pre-signaled.
2. Normal Operation
PE1.CTY1
PE2.CTY1
PE1.CTY5
PE2.CTY5
CR1
CR2
Primary LSP
Secondary LSP
RSVP Hello
RSVP Hello
RSVP Hello
3. Network Impairment
PE1.CTY1
PE2.CTY1
PE1.CTY5
PE2.CTY5
CR1
CR2
Primary LSP
Secondary LSP
4. Protection Switching
PE1.CTY1
PE2.CTY1
PE1.CTY5
PE2.CTY5
CR1
CR2
Primary LSP
Secondary LSP
CR3
CR3
CR3
CR3

36
1. Outage1) Link Failure2) Node Failure (RSVP Hello)
PE1.CTY1
PE2.CTY1
PE1.CTY5
PE2.CTY5
CR1
CR2
LSP
3. RSVP Patherr and Resvtear
unicast to ingress PE
1. Detour LSP Pre-Setup
.Fast reroute (or one-to-one backup) allows an LSR immediately upstream from an outage to quickly route around a failed link or node to an LSR downstream of the outage.
.This is accomplished by pre-computing and pre-establishing detour paths that bypass the immediate downstream link and the next-hop LSR.
.For LSP PE1.CTY1-to-PE1.CTY5, the following detours are established
.PE1.CTY1 create a detour to PE1.CTY5 via CR3
.CR1 create a detour to PE1.CTY5 via CR3
.CR2 create a detour to PE1.CTY5 via CR3
2. Normal Operation
PE1.CTY1
PE2.CTY1
PE1.CTY5
PE2.CTY5
CR1
CR2
RSVP Hello
RSVP Hello
RSVP Hello
3. Network Impairment
PE1.CTY1
PE2.CTY1
PE1.CTY5
PE2.CTY5
CR1
CR2
2. CR2 switches traffic to its dedicated detour path
Detours LSPs
4. Re-optimization
.Fast reroute provides local repair and allows connectivity to be restored faster than traffic can be switched by the ingress LSR to a standby secondary LSP.
.Fast reroute is only a short-term solution because the detour paths may not provide adequate bandwidth and the activation of a detour path can result in congestion on bypass links.
.As soon as the ingress router calculates a new path avoiding the failure, traffic is redirected along the new path, detours are torn down, and new detours established.
Local Protection: Fast Reroute (1:1 Protection)
CR3
CR3
CR3

37
PE1.CTY3
PE2.CTY3
PE1.CTY1
PE2.CTY1
PE1.CTY5
PE2.CTY5
PE1.CTY7
PE2.CTY7
CR1
CR2
LSP1: PE1.CTY3-to-PE1.CTY5
LSP2: PE1.CTY1-to-PE1.CTY7
LSP1
LSP2
.Many-to-one (facility backup) is based on interface rather than on LSP. While fast reroute protects interfaces or nodes along the entire path of a LSP, many-to-one protection can be applied on interfaces as needed.
.A bypass path is set up around the link to be protected using an alternate interface to forward traffic.
.Link protection (or many-to-one backup) allows an LSR immediately upstream from a link failure to use an alternate interface to forward traffic to its downstream neighbor LSR.
.This is accomplished by pre-establishing a bypass path that is shared by all protected LSPs traversing the failed link. A single bypass path safeguards the set of protected LSPs.
.The bypass path is shared by all protected LSPs traversing the failed link (many LSPs protected by one bypass path).
Bypass Path
1. Bypass Path Pre-Setup
PE1.CTY3
PE2.CTY3
PE1.CTY1
PE2.CTY1
PE1.CTY5
PE2.CTY5
PE1.CTY7
PE2.CTY7
CR1
CR2
LSP1
LSP2
BypassPath
2. Network Impairment (Link Failure)
1. Link Failure
3. RSVP Patherr and Resvtear
unicast to ingress PE
2. CR1 switches all LSP traffic to the bypass link
.When an outage occurs, the router immediately upstream from the link outage switches protected traffic to the bypass link, then signals the link failure to the ingress router.
.Like fast reroute, link protection provides local repair and restores connectivity faster than the ingress router switching traffic to a standby secondary path.
.However, unlike fast reroute, link protection does not provide protection against the failure of the downstream neighbor.
Local Protection: Link Protection (Many-to-one or facility backup)
CR3
CR3

38
PE1.CTY3
PE2.CTY3
PE1.CTY1
PE2.CTY1
PE1.CTY5
PE2.CTY5
PE1.CTY7
PE2.CTY7
CR1
CR2
LSP1: PE1.CTY3-to-PE1.CTY5LSP2: PE1.CTY3-to-PE1.CTY7
LSP1
LSP2
.Next-hop bypass: Provides an alternate route for an LSP to reach a neighboring router. This type of bypass path is established when you enable either node-link protection or link protection.
.Next-next-hop bypass: Provides an alternate route for an LSP through a neighboring router en route to the destination router. This type of bypass path is established exclusively when node-link protection is configured.
1. Bypass Path Pre-Setup
2. Network Impairment (Link Failure)
1. Link Failure
2. PE1.CTY3 switches all LSP traffic to the NHOP bypass link
NHOP
bypass
NNHOP
bypass
PE1.CTY3
PE2.CTY3
PE1.CTY1
PE2.CTY1
PE1.CTY5
PE2.CTY5
PE1.CTY7
PE2.CTY7
CR1
CR2
LSP1
LSP2
NHOP
bypass
Link Failure
1. Node Failure
2. PE1.CTY3 switches all LSP traffic to the NNHOP bypass link
PE1.CTY3
PE2.CTY3
PE1.CTY1
PE2.CTY1
PE1.CTY5
PE2.CTY5
PE1.CTY7
PE2.CTY7
CR1
CR2
LSP1
LSP2
NNHOP
bypass
Node Failure
Local Protection: Node-Link Protection (Many-to-one or facility backup)
CR3
CR3
CR3

39
End of Document
Related Contents
01/09/2009
Netmanias Technical Documents
08/02/2008
Netmanias Technical Documents
07/25/2003
Netmanias Technical Documents
04/27/2001
Netmanias Technical Documents

 

 

     
         
     

 

     
     

넷매니아즈 회원 가입 하기

2019년 1월 현재 넷매니아즈 회원은 49,000+분입니다.

 

넷매니아즈 회원 가입을 하시면,

► 넷매니아즈 신규 컨텐츠 발행 소식 등의 정보를

   이메일 뉴스레터로 발송해드립니다.

► 넷매니아즈의 모든 컨텐츠를 pdf 파일로 다운로드

   받으실 수 있습니다. 

     
     

 

     
         
     

 

 

비밀번호 확인
코멘트 작성시 등록하신 비밀번호를 입력하여주세요.
비밀번호