| 리포트 | 기술문서 | 테크-블로그 | 원샷 갤러리 | 네트워크/통신 뉴스 | 기술자료실 | 자유게시판      한국 ICT 기업 총람 |

제품 검색

|

통신 방송 통계

 
 
 
섹션 5G 4G LTE C-RAN/Fronthaul Gigabit Internet IPTV/UHD IoT SDN/NFV Wi-Fi Video Streaming KT SK Telecom LG U+ OTT Network Protocol CDN YouTube Data Center
 
Private 5G | Edge 넷매니아즈 Private 5G 분석글 KT SK Telecom Verizon AT&T Vodafone DT Telefonica China Mobile Optage

NEC

Fujitsu Microsoft AWS    
5G 특화망   HFR Ericsson Nokia Huawei Samsung Mavenir Affirmed Metaswitch Athonet Altiostar Airspan Kyocera Apresia   일본 Local 5G 전개현황
스폰서채널 |

 HFR의 5G 특화망 솔루션 (my5G)      my5G 솔루션 구성요소      my5G 특장점     5G특화망이란?     my5G 자료

  스폰서채널 서비스란?
banner
Virtual Private LAN Service (VPLS)
February 26, 2010 | By Cisco
코멘트 (0)
7
Thank you for visiting Netmanias! Please leave your comment if you have a question or suggestion.
Transcript
Virtual Private LAN Service (VPLS)

. What is VPLS? . What Is Driving VPLS? . Why Deploy VPLS? . VPLS Features

Introduction
Virtual Private LAN Service (VPLS)

. What is VPLS?

Broadcast domain 1 Broadcast domain 1

. VPLS extends the Ethernet broadcast domain between potentially geographically distant LAN segments
. Allows standard Ethernet devices communicate with each other as if connected to a common LAN segment

VPLS Reference Model


. The set of PE devices interconnected via PWs appears as a single emulated LAN to a customer
Ref: RFC 4762 Virtual Private LAN Service over LDP, January 2007

VPLS Reference Model


. The set of PE devices interconnected via PWs appears as a single emulated LAN to a customer
Ref: RFC 4762 Virtual Private LAN Service over LDP, January 2007

What Is Driving VPLS?
The Expanding Use of Ethernet


Access Aggregation PSN Aggregation Access



Why Deploy VPLS?

Feature  Benefits  
MPLS core network emulates  . Overcomes distance limitations of  
a flat LAN segment  Ethernet-switched networks . Enables Virtual Private LAN Services . Customers maintain routing andadministrative autonomy  
Extends Ethernet broadcast capability across WAN .Point to MultipointConnectivity  . Connects each customer site to many or all other customer sites . A single CE-PE link transmits Ethernetpackets to multiple remote CE routers . Fewer connections required to get fullconnectivity among customer sites . OpEx Savings  
Multipoint plug-and-play provisioning  . Adding, removing or relocating a CErouter requires configuring only thedirectly attached PE router . OpEx Savings  


“Flat” VPLS Deployment Model:
Customers Attach Directly to VPLS Service



Hierarchical VPLS Deployment Model:Hub-and-Spoke

Why H-VPLS? Greater Scale

Flat VPLS H-VPLS

. Full PW mesh from the edge . Full PW mesh only within core . Higher signaling overhead . Minimizes signaling overhead . Packet replication done at the edge . Packet replication done in the core only . Node discovery and provisioning . Partitions node discovery into smaller
extend end-to-end domains
H-VPLS Access: QinQ or MPLS at Edge

“L2” VPLS . H-VPLS with QinQ Access (QinQ) (IP/MPLS Core) U-PE A N-PE 1 . Access domain defined by CE STP IEEE 802.1ad (QinQ) (QinQ)
PW
CE

U-PE B
N-PE 2

MPLS VPLS . H-VPLS with MPLS Access (H&S PW) (IP/MPLS Core) U-PE A N-PE 1
. Uses PW EoMPLS circuit CE to backhall traffic from MPLS
PW

U-PE to N-PE CE
U-PE B
N-PE 2

VPLS Features
. VPLS Autodiscovery

. Pseudowire Redundancy (see AToM for example)
. N-PE Redundancy with MAC Address Withdrawal

VPLS Autodiscovery and Signaling


. Autodiscovery: BGP is the configuration agent
True autodiscovery of VPN members
No need to explicitly list them
. Signaling: LDP sets up a standard PW
PWs signal other information such as
attachment circuit state, sequencing
information, etc.

Cisco IOS supports targeted LDP for
AToM and VPLS

Discovery & Signaling
. Discovery & signaling are separable parts of L2VPN

establishment
Discovery (finding members of an L2VPN) is a
point-to-multipoint task

Signaling (establishing the pseudowires) is apoint-to-point task . By separating the tasks, you can choose a suitableprotocol for each: BGP, RADIUS, etc. for Discovery LDP, L2TPv3 for PW Signaling

LDP vs. BGP for PW Signaling

. For VPLS scaling,full mesh is not a significant problem
. LDP provideslighter-weightsolution

LDP  BGP  
Point-to-Point Information Only  Broadcasts All Information to All Peers  
No Policy  Complex Policy,Often ChangingInformation Advertised  
Mostly Idle  Can Have Significant Churn Due to Broadcast  

H-VPLS N-PE Redundancy for MPLS Access
Cust VFI/MPLS Access/AggMPLS Core
bridgeNetwork
module

PE
node

P

u-PE n-
node
PE1
PW
n­PE2

Feature Description: Upon PW failure detection by u-PE, PW
redundancy selects the backup n-PE, and then a MAC address
withdrawal message is sent by the u-PE to the n-PE2 backup

This H-VPLS redundancy feature has three components:1.PW loss-of-connectivity detection (includes signaling of PWStatus)2.PW Redundancy anchored at the u-PE and terminated at n­PE1 & n-PE2
Presentation_ID ⓒ 2007 Cisco Systems, Inc. All rights reserved. Cisco Confidential
3.MAC Address Withdrawal

References
Virtual Private LAN Service (VPLS)

. RFC 4447 Pseudowire Setup and Maintenance Using LDP,

April 2006

http://www.ietf.org/rfc/rfc4447.txt
. RFC 4448 Encapsulation of Ethernet over MPLS,
April 2006

http://www.ietf.org/rfc/rfc4448.txt
. RFC 4762 Virtual Private LAN Service over LDP,
January 2007

http://www.ietf.org/rfc/rfc4762.txt
View All (822)
4G (2) 4G Evolution (1) 5G (37) 5g (1) 802.11 (1) 802.1X (1) ALTO (1) ANDSF (1) AT&T (2) Acceleration (1) Adobe HDS (3) Akamai (6) Amazon (3) Apple HLS (4) Authentication (1) BRAS (2) BT (1) Backbone (4) Backhaul (12) BitTorrent (1) Broadcasting (3) C-RAN (13) C-RAN/Fronthaul (12) CCN (4) CDN (52) CDNi (1) COLT (1) CORD (1) CPRI (2) Cache Control (1) Caching (5) Carrier Cloud (2) Carrier Ethernet (9) Channel Zapping (4) China Mobile (1) China Telecom (1) Cloud (10) Cloudfront (1) DASH (2) DCA (1) DHCP (3) DNS (1) DSA (1) Data Center (7) Dynamic Web Acceleration (1) EDGE (1) EPC (5) Energy (1) Ericsson (5) Ethernet (8) FEO (2) Fairness (1) Fronthaul (5) GiGAtopia (1) Gigabit Internet (2) Global CDN (1) Google (5) HLS (1) HTTP (1) HTTP Adaptive Streaming (18) HTTP Progressive Download (3) HTTP Streaming (1) HetNet (1) Hot-Lining (1) Hotspot 2.0 (2) Huawei (3) ICN (4) IP (1) IP Allocation (1) IP Routing (8) IPTV (15) Intel (1) Internet (1) Interoperability (2) IoST (1) IoT (14) KT (22) LG U+ (3) LTE (70) LTE MAC (1) LTE-A (2) Licensed CDN (1) M2M (3) MEC (4) MPLS (25) MVNO (1) Market (4) Metro Ethernet (7) Microsoft (2) Migration (1) Mobile (4) Mobile Backhaul (1) Mobile Broadcasting (1) Mobile CDN (2) Mobile IP (1) Mobile IPTV (3) Mobile Video (1) Mobile Web Perormance (1) Mobility (1) Multi-Screen (7) Multicast (7) NFC (1) NFV (2) NTT Docomo (2) Netflix (6) Network Protocol (31) Network Recovery (3) OAM (6) OTT (31) Ofcom (1) Offloading (2) OpenFlow (1) Operator CDN (14) Orange (1) P2P (4) PCC (1) Page Speed (1) Private 5G (1) Programmable (1) Protocol (7) Pseudowire (1) QoS (5) Router (1) SCAN (1) SD-WAN (1) SDN (15) SDN/NFV (15) SK Telecom (22) SON (1) SaMOG (1) Samsung (2) Security (6) Service Overlay (1) Silverlight (4) Small Cell (3) Smart Cell (1) Smart Grid (2) Smart Network (2) Supper Cell (1) Telefonica (1) Telstra (1) Terms (1) Traffic (2) Traffic Engineering (1) Transcoding (3) Transparent Cache (2) Transparent Caching (14) VLAN (2) VPLS (2) VPN (9) VRF (2) Vendor Product (2) Verizon (2) Video Optimization (4) Video Pacing (1) Video Streaming (14) Virtual Private Cloud (1) Virtualization (3) White Box (1) Wholesale CDN (4) Wi-Fi (13) WiBro(WiMAX) (4) Wireless Operator (5) YouTube (4) eMBMS (4) eNB (1) 망이용대가 (1) 망중립성 (1) 스마트 노드 (1)

 

 

     
         
     

 

     
     

넷매니아즈 회원 가입 하기

2020년 1월 현재 넷매니아즈 회원은 49,000+분입니다.

 

넷매니아즈 회원 가입을 하시면,

► 넷매니아즈 신규 컨텐츠 발행 소식 등의 정보를

   이메일 뉴스레터로 발송해드립니다.

► 넷매니아즈의 모든 컨텐츠를 pdf 파일로 다운로드

   받으실 수 있습니다. 

     
     

 

     
         
     

 

 

비밀번호 확인
코멘트 작성시 등록하신 비밀번호를 입력하여주세요.
비밀번호